

MEMORANDUM

81 Mosher Street Baltimore, MD 21217 Phone 410.728.2900 Fax 410.728.0282 www.rkk.com

Date: April 26, 2016

To: Delaware Department of Transportation

800 Bay Road

Dover, Delaware 19903

From: Eric M. Klein, P.E., D.GE

Bibek B. Shrestha, P.E BBS

CC: Nancy R. Bergeron, P.E.

Re: Additional Foundation Recommendations

Christina River Bridge

City of Wilmington, Delaware

Comm. No. 04-130-03

This memorandum is a supplement to the Final Foundation Report (FFR), dated January 29, 2016 for the Christina River Bridge in the City of Wilmington, Delaware. This memorandum provides the following analysis and recommendations for the proposed construction:

- West Approach Ramp Settlement Analysis of Grade Beam supporting the EPS facing panels
- East Approach Ramp Design of Load Transfer Platform (LTP) for Deep Mixing Method (DMM)
- Roadway Embankment (East of STA 444+00) Lateral squeeze analysis
- Special Consideration Seismic monitoring

The following recommendations have been developed on the basis of the project characteristic and subsurface conditions described in the Final Foundation Report dated January 29, 2016. If there are any significant changes to the project characteristics or if significantly different subsurface conditions are encountered during construction, RK&K should be consulted so that the recommendations of this memorandum can be reviewed and modified as required.

West Approach Ramp

In the FFR, we recommended the west approach ramp west of the underpass be constructed of Expanded Poly-Styrene (EPS). To eliminate any additional settlement a fully compensated embankment should be constructed by undercutting the foundation soils to a depth of 4.5-ft below the existing ground surface. The leveling pad for the proposed EPS retaining wall facing panels will be located at approximately EL +6. The proposed leveling pad for the facing panels will be 2.5-ft wide. We estimate a maximum load increase of approximately 715-psf along the facing panel.

Page 2 of 5

We estimated the total settlement below the facing panel for the EPS retaining wall. The settlement analysis was performed using the geotechnical software application FoSSA 2.0. A maximum total settlement of 0.6-inches, approximately 0.25-inches immediate settlement and 0.35-inches consolidation settlement, is anticipated below the facing panel. The immediate settlement below the leveling pad was also estimated using the semi-empirical strain influence factor proposed by Schmertmann and Hartman (1978). The anticipated immediate settlement using this method is approximately 0.2-inches.

East Approach Ramp

In the FFR, we recommend the east side ramp be construction of MSE wall supported on DMM columns. The soil improvement using DMM will extend from Abutment B at approximately STA 440+70 to STA 443+50. The load from the approach embankment will be transferred to the DMM columns through a geosynthetic reinforced Graded Aggregate Load Transfer Platform (LTP). The LTP will be constructed immediately above the columns to help transfer the load and prevent a "bearing capacity" type of failure above the columns. The LTP also reduces differential settlement for lower height embankments.

The design of the LTP was performed using the Beam (Collin) Method (Ref: *Geosynthetic-Reinforced Column-Support Embankment Design Guidelines* by Collins, Han, and Huang). The thickness of the LTP should be at least one half the clear span between the DMM columns. The vertical load from the soil within the arch and any surcharge load, if the thickness of the embankment is not great enough to develop the full arch, is carried by the reinforcement. The tensile load in the reinforcement was estimated based on tension membrane theory and is a function of the amount of strain in the reinforcement. A minimum of three layers of geosynthetic reinforcement should be installed in the load transfer platform and the initial strain in the geogrid reinforcement should be limited to 5%. The preliminary design of the reinforcement for a clear span between DMM columns of 5-ft and 8-ft are summarized in Table 1.

Т	Table 1 – Sur	nmary of Load Tra	ansfer Platform Re	inforcemen	ıt
Clear Spacing		Maximum Design		Ultimate	Long Term
between DMM	LTP	Tensile Load at		Tensile	Allowable
columns	Thickness	5% Strain	Geogrid	Strength	Design Strength
(ft)	(ft)	(lb/ft)	Reinforcement	(lb/ft)	(lb/ft)
5-ft	3-ft	154	Biaxial BX1100	850	237
8-ft	4-ft	386	Biaxial BX1500	1850	516

Roadway Embankment (East of STA 444+00)

The roadway embankment east of STA 444+00 will be constructed using Type F – Common Borrow. The maximum height of embankment fill will be approximately 7-ft above the existing ground surface at approximately STA 448+50. The side slopes of the roadway embankment will be approximately 3(H):1(V). To minimize the effect of the long term settlement we recommend the roadway embankment be constructed with a 2-ft additional surcharge above the proposed grade and quarantined for a minimum time period of 5-months.

Page 3 of 5

We evaluated the potential for lateral squeeze due to the construction of the roadway embankment based on the method proposed by Silvestri, 1983.

FS squeezing
$$=\frac{2c_u}{\gamma D_s \tan \theta} + \frac{414 c_u}{H\gamma} \ge 13$$

where,

 θ = Angle of Slope

 γ = Unit Weight of soil in slope

 D_s = Depth of soil beneath slope base of embankment

H= Height of slope

 c_u = Undrained shear strength of soft soil beneath slope

The lateral squeeze analysis was performed for the 7-ft fill embankment and for the temporary condition with a 2-ft additional surcharge above the proposed grade. Table 2 summarizes the Factor of Safety for lateral squeezing for the proposed embankment and the additional 2-ft surcharge.

1	Table 2 – Summary of Factor o	of Safety for Lateral Squ	eezing
Location	Embankment	Maximum Height	Factor of Safety
STA 110±50	Proposed Grade	7.0-ft	1.55
STA 448+50	2-ft Additional Surcharge	9.0-ft	1.34

The FS with the 2-ft surcharge is getting close to the minimum recommended. Inclinometers will be installed; if bulging is noted in the inclinometers, a portion of the fill can be removed until the pore pressures dissipate.

Seismic Monitoring

Seismic monitoring is required for all construction operations within a distance of 50-feet of the existing utilities that have the potential to produce vibrations at damaging levels, such as pile driving or significant truck traffic. The vibrations should be monitored for structures and utilities within 50-ft of any drilled shaft installation or sheet pile installation. Drilled shaft drilling will cause only about 0.089-in/sec at a distance of 25-ft, so this will not likely cause any significant disturbances. However, installing the casing may cause between 0.17 to 0.734-in/sec at 25-ft depending on the method of installing the casing, so we recommend vibration monitoring for casing and pile driving installation.

A firm specializing in this vibration monitoring should be retained by the Contractor to monitor the construction induced vibrations. A detailed vibration monitoring plan should be submitted for the Engineer's approval. The plan would include the monitoring locations, the type of equipment to be used, qualifications of the monitoring personnel, and requirements for the timely presentation of monitoring data to the Engineer.

Vibrations can also effect green concrete. The Contractor should monitor construction activities adjacent to freshly placed concrete utilizing one of the two seismic monitoring options listed below. Construction activities

Page 4 of 5

to be limited during this period include, but not limited to, drilled shaft installation and use of any type of heavy construction equipment.

Option 1:

Where vibration monitoring around freshly poured concrete is performed the following Peak Particle Velocity (PPV) limits and distances shall be maintained:

Peak Particle Velocities for Concrete at Different Ages.

Age of concrete at which vibration occurs	Permitted peak particle velocity, (in/sec)
0-10 hrs	0.2
10-24 hrs	0.4
More than 24-hrs	2.0

Clear Distance between construction operations and freshly poured concrete at different ages.

Age of concrete	Clear Distance (ft)
0-2 days	50
2-14 days	20

The vibration shall be monitored continuously with a real time data acquisition system with an alarm system to notify the Contractor if vibration exceeds the limiting values.

Option 2:

Where vibration is not monitored the following limits shall be maintained:

Clear distance between construction operations and freshly poured concrete at different ages

Age of concrete	Clear Distance (ft)
0-2 days	100
2-14 days	20

Peak particle velocity (PPV) at existing adjacent structures or utilities shall not exceed that shown in the Office of Surface Mining (OSM) Method 3 Figure shown in Figure 1. The criteria for drywall should be used for all structures and utilities except those that actually are constructed of plaster or otherwise noted. These limits may be adjusted by the Engineer based on any evidence of damage to structures.

Page 5 of 5

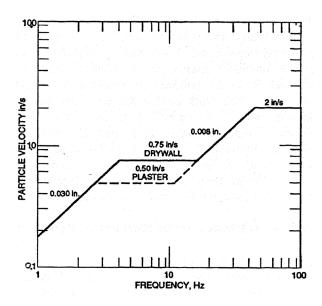


Figure 1 – OSM Method 3

Attachments

Calculations

- Settlement Analysis of Grade Beam Supporting EPS Facing Panels
- Design of Load Transfer Platform for Deep Mixing Method
- Roadway Embankment STA 447+00 to STA 450+00 Lateral Squeeze Analysis

M:\projects\2004\04130_crb\Geotech\GER\2016 Supplement Memo\Geotechnical Memo 04-27-16.docx

GEOTECHNICAL QUALITY CONTROL SIGN OFF SHEET

Project Name:	Christina River Bridg	ge	
Commission Number	er: 04-130-03G		
Client Name:			
Document Title:	Settlement Analysis	of Grade Beam Supporting EPS	Facing Panels
Document Type: [Proposal I	Report/Memo 🗵 Calculatio	ons
(Check One)	Boring Logs	Specification \square Other:	
Project Milestone:		Due Date:	·
1958 150 miles	I was the originator of this or to passing it on for Qua	s work product, and that I have lity Control checking.	e carefully
Printed Name: Ar	jun Roy		
Signature: A	non-	Date: <i>0 3/</i>	24/2016
	Print Name	Signature	Date
Checked:	ERIC MICLEIN	EM	4/20/16
Corrected:	BIBEK SHRESTHA	Land Smegfor	4/21/16
Checked:	ETEC MKLTIN	E Mili	4(>6/16
☐ Corrected:			
Checked:			
Project Engr:			

GEOTECHNICAL CALCULATION QUALITY CONTROL CHECKLIST

Project: Christina River Bridge	Comm. No: 04-130-03G
Title of Calculation Set: Settlement Analys	sis of Grade Beam Supporting EPS Facing Panels
RK&K Project Manager:	Coordinating Discipline POC:
Calculations Prepared By: Arjun Roy	Design Method/Code: FoSSA 2.0
M:\projects\2004\ File Path on Network: 2016\Grade Beam	04130_crb\Geotech\Calcs\Final Design Calcs
Subsurface Characterization Approved By:	
Initial Calculations: Signature of Originat ☐ Geotech Quality Control Sign Off Shee ☐ Calculations are neat, legible and und ☐ Variable inputs are highlighted and chaspreadsheets. ☐ Table of Contents is provided. ☐ Heading on each page filled out, inclu ☐ The first page contains purpose of the ☐ References for design criteria, data, mand version numbers are given, and ☐ All assumptions are listed, explained, ☐ All input by others is attached and included, concrete/steel properties, et ☐ Can the analytical steps involved be fore ☐ Do the calculations agree with the oth ☐ Footer with file path/tab name and proved Calculation Summary with recomment ☐ All calculations are checked and each before giving to the checker.	et is provided. erstandable. eck confirmations are clearly marked in calculation ding computer input and output. calculation. ethods, formulas and computer program names d included in appendices as necessary. and those needed to be verified later are flagged. ludes originator, date provided. (i.e. Structures cc.) ollowed independent of the originator? ner inter-department / project documents? rint date is provided on calculation spreadsheets. ided that clearly depict the design requirements. dations included in front of calculation set. calculation sheet is initialed by the originator
☐ All calculations are checked and each ca☐ Calculation set reviewed by Project Man	d cross-references are complete and accurate. Ilculation sheet initialed by the checker. nager.
☐ Has this calculation been superseded?	keterence new calculation, it applicable.

Subject Sellewert of Grade Bear Sipporting Find Page TIC of Prepared By AC ______ Date 23/24/16 Checked By ______ Date _____

Table of Content	
	10 m
purrose Ref. Loads -	1
	1
BOWLE LOED -	2
	3
Fende Diagrii	4
Coorplations for ESANOS-	5
Soil Profile 3 permusters	6
	7 to 14

RKSK	Subject Settlement of Grade Geam Supporting EPS Fancipage of Christine River Boidge Cm. No. 07130-036 Prepared By ACR Date 63/23/16 Checked By EN Date 41216
Pur pose:	sellipment Analysis of Grade Beans EPS Fracing Parel.
Assumption	os: Grade Beam will be founded one Existing fill -
Raferonce	5 Fo SSA 2'C
Design	Servica Pracsure = 715 PSF
	of settlement Amalysis;
Elast	The IN
	SETTLEMENT (SCHMERTMAN METHOD) = 0.17 in ftg 15

RE: RW1 and RW2 Levelling Pad Bearing Pressure

Kimberly Duong

Fri 3/11/2016 3:30 PM

To Bibek Shrestha <bshrestha@rkk.com>;

Looks like service pressure is about 715 psf.

KIMBERLY M. DUONG, PE

Project Engineer, Structures

RK&K

81 W Mosher St Baltimore, MD 21217

410.728.2900 P | 410.462.9463 D | 410.728.2834 F www.rkk.com

f E in You Tube

RESPONSIVE PEOPLE | CREATIVE SOLUTIONS

From: Bibek Shrestha

Sent: Friday, March 11, 2016 3:27 PM To: Kimberly Duong <kduong@rkk.com>

Subject: Re: RW1 and RW2 Levelling Pad Bearing Pressure

Kim,

Does he have a service load because I will need that to run my settlement.

Thank you,

Bibek

Bibek B. Shrestha, P.E.

Project Engineer, Geotechnical

Ce = Cc | 1+60

Christina River Bridge

		0.0340	0.0303	0.0356	0.0203	0.0022	0.0100	0.0223	0.0556	0.0518	0.0302	0.0225	0.0286	0.0300	0.0278	
	ڻ	0.0059	0.0074	0.0065	0.0048	0.0005	0.0006	0.0053	0.0089	0.0108	0.0052	0.0052	0.0056	0.0061	0.0052	,
	౮	0.017	0.033	0.016	0.016	0.002	0.001	0.021	0.02	0.029	0.013	0.016	0.0167	0.0205	0.0146	
	CR	0.0275	0.0270	0.0327	0.0358	0.0407	0.0065	0.0433	0.0222	0.0299	0.0240	0.0361	0.0296	0.030Z	(0.0289)	
	ည	0.1722	0.2449	0.1838	0.2356	0.2262	0.0649	0.2392	0.1598	0.2095	0.1719	0.2328	0.1946	0.2091	0.1863	
	5	0.09	0.1	60.0	0.17	0.07	0.17	0.05	0.11	0.03	0.01	0.34	0.1118	0.1125	6.1114	
	မိ	1.904	3.45	1.448	2.353	2.935	0.541	2.929	1.253	1.673	1.501	2.05	2.0034	2.2888	(1.8403)	
ı la)	ပံ	80.0	0.12	80.0	0.12	0.16	0.01	0.17	0.05	80.0	90.0	0.11	0.0945	0.1000	0.0914	
West Bank (Strata la)	ပိ	0.5	1.09	0.45	0.79	0.89	0.1	0.94	0.36	0.56	0.43	0.71	0.6200	0.7075	0.5700	
West	OCR	2.57	69.0	1.54	1.17	1.28	1.80	0.75	1.47	1.01	1.69	1.12	1.3731	1.4947	(4.3036)	
	P	06.0	0.50	1.05	06.0	1.00	1.85	0.86	1.15	1.05	1.15	0.95	Average	(Abutment)	-1 to RW-4)	
	Overburden	0.35	0.72	0.68	0.77	0.78	1.03	1.14	0.78	1.04	0.68	0.85		Average (Abu	Average (RW-1 to	
	Elevation Overburden	-17.2	7.7-	-3.2	-7.0	-2.5	-11.5	-6.5	-1.2	-9.2	-3.1	-9.1				
	Depth	21	12	14	18	14	23	18	12	20	14	20				
	Boring No.	AA-1	AA-2	SA-1	SA-2	RW-1	RW-1	RW-2	RW-3	RW-3	RW-4	RW-4				

					East	East Bank (Strata la)	ta la)		U		14	γ	CR=	14
Depth Elevation Over			Overburden	ď	OCR	ပိ	ပ်	°e	در	ည	CR	ຶ່ນ	. "	
12 -6.15			0.72	09:0	0.8	0.38	0.05	1.631	90.0	0.1444	0.0190	0.006	0.0023	0.0158
12 -6.89			0.55	0.85	1.5	0.33	0.03	1.265	0.44	0.1457	0.0132	0.004	0.0018	0.0121
20 -13.75			1.26	1.12	6.0	0.3	0.02	1.199	0.35	0.1364	0.0091	0.004	0.0018	0.0133
14 -5.77			0.65	1.15	1.8	0.37	0.03	1.445	0.89	0.1513	0.0123	900.0	0.0025	0.0162
16 -9.8			0.71	1.20	1.7	0.39	0.04	1.503	0.04	0.1558	0.0160	0.023	0.0092	0.0590
30 -23.8			1.11	0.82	2.0	. 0.4	90.0	1.758	0.01	0.1450	0.0218	0.011	0.0040	0.0275
12 -7.4			0.44	0.78	1.8	0.42	0.03	1.627	0.16	0.1599	0.0114	0.022	0.0084	0.0524
10 -4.68	-4.68		0.50	0.65	1.3	0.61	80.0	2.062	0.1	0.1992	0.0261	0.04	0.0131	0.0656
8 -3.13	-3.13		0.54	08.0	1.5	0.52	0.05	1.791	0.2	0.1863	0.0179	900.0	0.0021	0.0115
18 -13.13			0.67	0.82	1.2	19.0	60.0	2.243	0.18	0.2066	0.0278	0.008	0.0025	0.0119
				Average	1.3244	0.4390	0.0480	1.6524	0.2430	0.1631	0.0175	0.0130	0.0048	0.0285
			Average (/	(Abutment)	1.2592	0.3450	0.0325	1.3850	0.4350	0.1445	0.0134	0.0050	0.0021	0.0144
Av	Av	A	Average (RW-5	-5 to RW-8)	1.3678	0.5017	0.0583	1.8307	0.1150	0.1755	0.0202	0.0183	0.0065	0.0380

0.0579

C. 00061

CR 0.0388

CC 0.1054

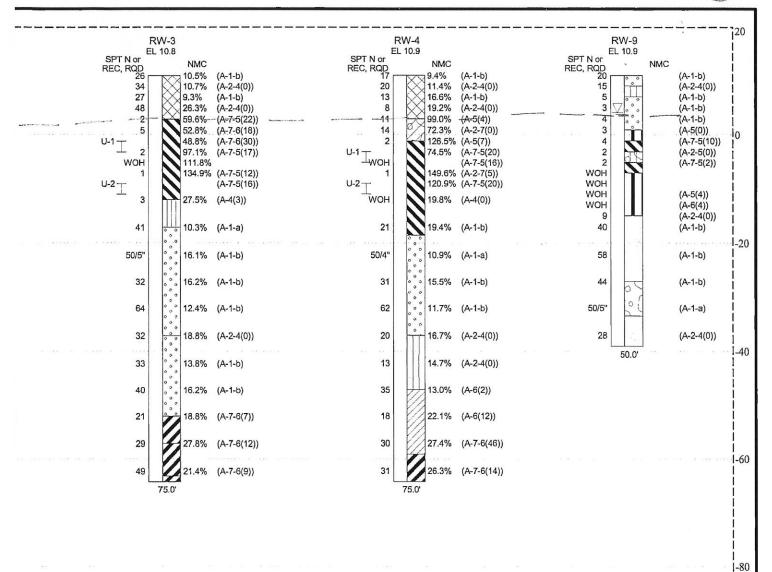
CV 0.01

0.802

C, 0.07

Potomac Clay

OCR


Elevation Overburden -52.5 1.50

Depth

Boring No. W-4

RKK FENCE - AASHTO CRISTINA RIVER BRIDGE.GPJ RKK_CURRENT.GDT 2/17/14

& Kahl, LLP jers | Planners | Scientists Street 2 21217

2900

Summary of Boring Data West Approach Ramp

Figure No.

A-3e

Drawn: ACR

Title:

Approved:

EMK Date: 2/17/14

Comm. No.

104-130

j-120

Equations for stress-strain modulus E, by several test methods TABLE 5-5 E. in kPa for SPT and units of q. for CPT; divide kPa by 50 to obtain ksf. The N values should be estimated as

N ₅₅ and not N ₇₀	**************************************			245
Soil	SPT	CPT		54(k= E)
Sand (normally consolidated)	$E_{*} = 500(N + 15)$ $E_{*} = (15000 \text{ to } 22000) \ln N$ $E_{*} = (35000 \text{ to } 50000) \log N$	$E_s = 2 \text{ to } 4q_c$ $E_s \dagger = (1 + D_r^2)q_c$	UGNY STIFF	>4
Sand (saturated)	$E_{i} = 250(N + 15)^{-1}$		571PF	1-2
Sand (overconsolidated)	$E_{1} = 18000 \mp 750N$	$E_s = 6$ to $30q_e$	MECT UM	0,5-1
ŷ	$E_{\text{HOCR}} = E_{\text{Hnd}} (\text{OCR})^{1/2}$		×15-7	0,75-0,5
Gravelly sand and gravel	E ₁ = $1200(N + 6)$ E ₁ = $600(N + 6)$ $N \le 15$ E ₁ = $600(N + 6) + 2000$ $N > 15$		UEWY	0-0,25
Clayey sand Silty sand Soft clay	$E_r = 320(N + 15)^{-1}$ $E_s = 300(N + 6)$	$E_s = 3 \text{ to } 6q_s$ $E_s = 1 \text{ to } 2q_s$ $E_s = 3 \text{ to } 8q_s$	TRIANAL E=2,	
	Using the undrained shear strength s, in	units of s,	PLAUE-	STONIN
Clay	$I_P > 30$ or organic $I_P < 30$ or stiff $E_{RIOCR } = E_{Rint} (OCR)^{1/2}$	$E_s = 100 \text{ to } 500s_s$ $E_s = 500 \text{ to } 1500s_s$	6 =	3.5 ge

(F'11

7531

U

Silt

† Vesić (1970.

‡ Author's equation from plot of D'Appolonia et al. (1970).

§ USSR (and may not be standard blow count N).

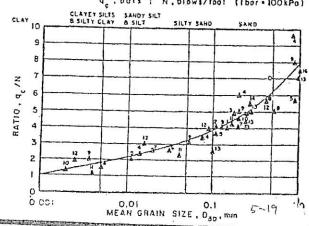
General sources: European Conference on Standard Penetration Testing (1974), vol. 2.1, pp. 150–151; CGJ, November 1983, pp. 726–737; Use of In Situ Tests in Geotechnical Engineering, ASCE (1986), p. 1173; Mitchel and Gardner

150-5000

2-20

TABLE 2-7 Typical range of values for the static stress-strain modulus E, for selected soils

Field values depend on stress history, water content, density, etc.


E, Soil ksf Mipa Clay Very soft 50-250 2-15 Soft 100-500 5-25 Medium 300-1000 15-50 Hard 1000-2000 50-100 Sandy 500-5000 25-250 Glacial till Loose 200-3200 10-150 Dense 3000-15000 150-720 Very dense 10 000-30 000 500-1440 Locss 300-1200 15-60 Sand Silty 150-450 5--20 Loose 200-500 10-25 Dense 1000-1700 50-81 Sand and gravel Loose 1000-3000 50-150 Dense 2000-4000 100-200 Shale 3000-300 000

40-400

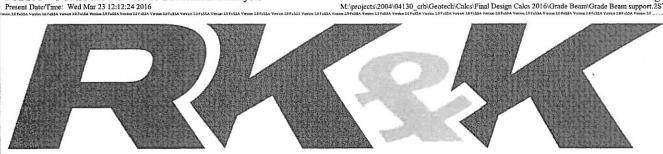

100 FOUNDATION ANALYSIS AND DESIGN

TABLE 2-8 Values or value ranges for Poisson's ratio μ

		- The state of the state μ							
WEDE SAN	Type of soil	μ							
= 1-21ng	Clay, saturated	0.4-0.5							
	Clay, unsaturated	0.1-0.3							
0.39	Sandy clay	0.2-0.3							
	Silt,	0.3-0.35							
	Sand, gravelly sand	-0.1-1.00							
	commonly used	0.3-0.4							
0.1463¢	Rock	0.1-0.4 (depends somewhat on							
		type of rock)							
	Loess	0.1-0.3							
	Ice	0.36							
	Concrete	0.15							
	q , bars ;	N. blows/foot (thor = 100kPo)	-						
_	CLAYET SILTS SANDY SILT B SILTY CLAY & SILT		,						
		4							
			u						
	the state of the s	1 1 1 1 7							

	? K		chi	ristin a	Riv	or B.	ridge		<i>O</i>		Em, No. 04	130-	0367
			7	!			1					1	
	587) Pro)	file .	and	Para	meter	5 %	i					
						ting.							
	-			15x 20	50 Fro	!'-d-	- - - - -				1 .		
										1	15 75	F	
								,	* (7			
i 		,,,,,	no Blo	diet	1			/		1	! : !	EL Y	-6-6
			- 1		em comment	1	1	169	1	¥ L	V	-(-:-!-
		(Fill)	8 =1.	zopef			- 1.		Gira I	- wa	Ser!).	
			P72	27*	·		<u> </u>						
			E = /	25 KS	(= 1	SIRPE	>					EL+	-6.0
		STE La	7=	11spef,	3u = 7	250 85	F		OCE :	= 1	Þ		
				7	sf. 14		100				Cohesi	ive s	cit
	2000	la fre	Cc =	0:186	Cr	= 20	29	6,-	n:11/3	112	day		····
	- y												
**************************************	anno de la composition della c			-Cc	- 0.07	80			: 1	* :	F	- 1	6'5
	(STK. I	6)	\{ =	= 125 P	: F	4=0	30					- 3' 1-1
				I F	- 125	Kst.					Dramile	11	
									1,		1		
	saran i										1 1 1		
	:				BU 65W	iface	Pro	file					
					1		1						

Christina River Bridge

Report created by FoSSA(2.0): Copyright (c) 2003-2012, ADAMA Engineering, Inc.

PROJECT IDENTIFICATION

Title:

Christina River Bridge

Project Number:

04130 - 03G

Client:

Delaware DOT

Designer: Station Number: ACR

ACR 03/24/2016.

Description:

EMT 4/20/16

Settlement Analysis of Grade Beam Supporting EPS Facing Panel

Company's information:

Name:

RK&K LLP

Street:

81 Mosher Street

Baltimore, MD 21217

Telephone #:

Fax #: E-Mail:

Original file path and name:

M:\project esign Calcs 2016\Grade Beam\Grade Beam support.2ST

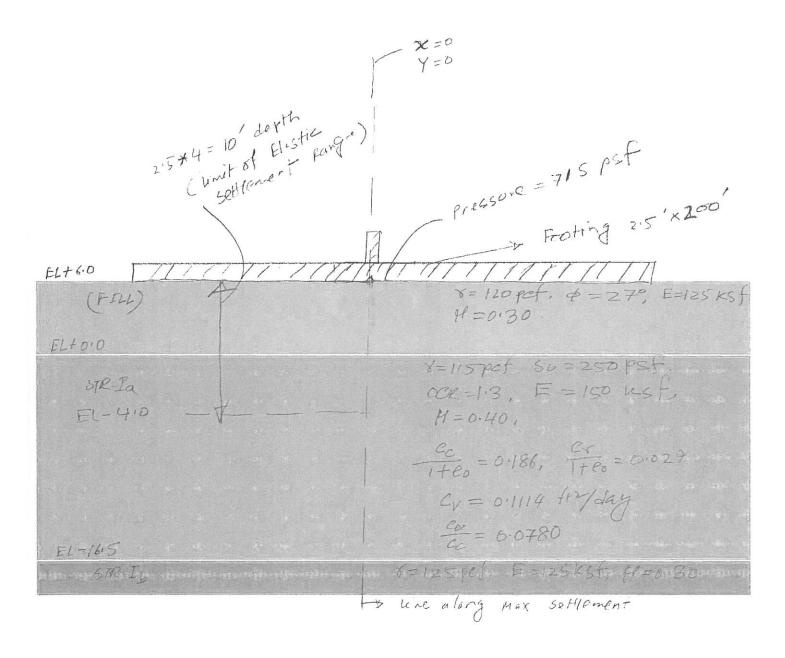
Original date and time of creating this file:

Wed Mar 23 10:55:33 2016

GEOMETRY:

Analysis of a Multiple Footings

INPUT DATA - FOUNDATION LAYERS - 3 layers


	Wet Unit Weight, γ [lb/ft³]	Poisson's Ratio μ	Description of Soil
1	120.00	0.30	FILL
2	115.00	0.40	Cohesive (STR Ia)
3	125.00	0.30	Cohesionless (STR-Ib)

INPUT DATA - MULTIPLE FOOTINGS - 1 footings

INPUT DATA OF WATER

Point	Coordin	ates (X, Z)		
#	(X) [ft.]	(Z) [ft.]		
1	-100.00	6.00		
2	100.00	6.00		

DRAWING OF SPECIFIED GEOMETRY

INPUT DATA FOR CONSOLIDATION — $\alpha = 1/6$

	er # erging solidation [Yes/No]	OCR = Pc/Po	Cc / (1+e0)	Cr / (1+e0)	e0	Cv [ft ²/day]	Drains at :	,
1	No	N/A	N/A	N/A	N/A	N/A	N/A	
3	Yes No	1.30 N/A	0.186 N/A	0.029 N/A	N/A N/A	0.1114 N/A	Top & Bot, N/A	

11

IMMEDIATE SETTLEMENT, Si

Node	le Settlement along section: Layer		Young's	Poisson's	Settlement	Initial	Final	Total Settlement	
#	X	Y	(1r)	Modulus,	Ratio,	of each	Z	Z *	Sum of Si(k),
***************************************	[ft.]	[ft.]	(k)	[lb/ft ²]	μ	layer, Si(k) [ft.]	[ft.]	[ft.]	[ft.]
Ĭ	0.00	0.00	1	125000	0.3000	0.0161	6.00	5.98	0.02
			2	150000	0.4000	0.0034			
			3	125000	0.3000	0.0000			

^{*}Note: Final Z is calculated assuming only 'Immediate Settlement' exists.

ULTIMATE SETTLEMENT, Sc

Node			Original	Settlemen	t Final	
#	X	Y	Z	Sc	Z *	
	[ft.]	[ft.]	[ft.]	[ft.]	[ft.]	
1	0.00	0.00	6.00	0.03	5.97	

*Note: Final Z is calculated assuming only 'Ultimate Settlement' exists.

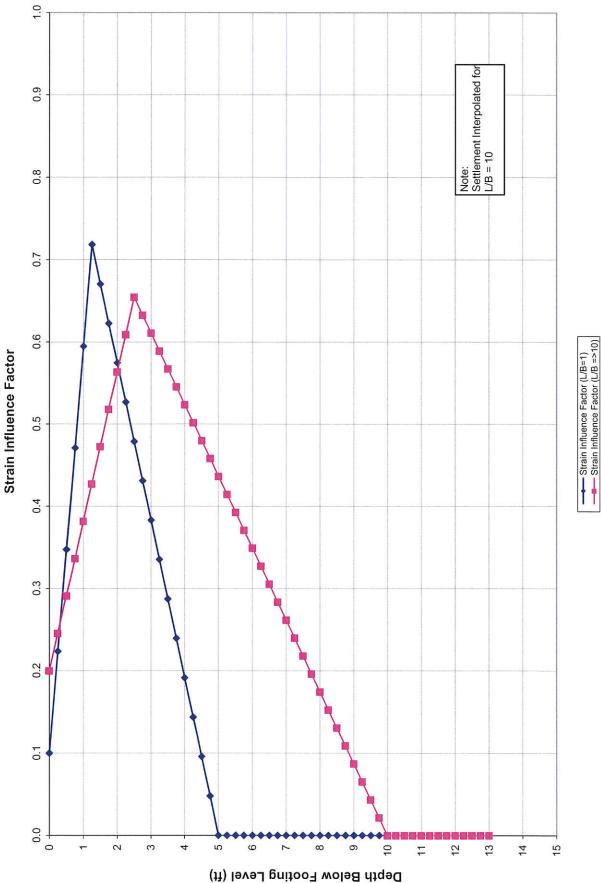
Consolidation Se = 0.03 to 36 mm

Venna 23 fallak Venna 24 fallak Venna 25 falla

TABULATED GEOMETRY: INPUT OF FOUNDATION SOILS

Found.	Point	Coordinate	s(X, Z):	
Soil	#	(X)	(Z)	DESCRIPTION
#		[ft.]	[ft.]	
1	1	-100.00	6.00	FILL
	2	100.00	6.00	
2	1	-100.00	0.00	Cohesive (STR Ia)
	2	100.00	0.00	
3	1	-100.00	-16.50	Cohesionless (STR-Ib)
	2	100.00	-16.50	, ,

Varies 15 falsk arms 15 falsk verse 15 falsk verse


TABULATED GEOMETRY: INPUT OF MULTIPLE FOOTINGS - 1 footings

Footing	L (in X	B (in Y	X	Y	q
	direction)	direction)	of center	of center	[ft]l
#	[ft]	[ft]	[ft]	[ft]	[lb/ft²]
1	200.00	2.50	0.00	0.00	715.00

Verme 18 Falla Vermu 18 Fajla Vermu

													Pg	15 4/21/16
			ω									B	BS	4/21/16
	y: BBS nk:	RK&K Date Date	: 4/21/2016			SUBJECT:	Christina R	liver Bridge,	Leveling Pad	for EPS wa		K&K Comn	MIL 4	26/16 053-02.GEO
ELASTIC SE		NT ANALYS]			C	Creep Time :		Settlement: (0.17 in		REFERENCE: EM 1110-1-190/ Schmertmann	4
	FOOTIN	NG WIDTH :	=2.5 ft	1	L/B= 80.00	SLENGTH =	200.0 ft] gross i	BEARING PR	ESSURE =[0.36 tsf		Procedure	
		Effective O	verburden	-		0.0 ft	@	γ _{overburden} =	120.0 pcf	q = 0	0.00 tsf			
IN	IFLUENC	NET BEAR CE COEFFIC	RING PRESSU CIENTS	RE		Existing F	oundation	Surcharge :	0.00 tsf	Δq = 0	0.36 tsf			
			VALUE OF I =											
		L/D-1	Effective Stre	355 W D/2		120	pcf		1.3	ft dv=	0.08	tsf		
			γ _{ν2} =			57.6	pcf		-4.8	ft dv=	0.00	tsf		
			σ' _{Izp} @ depth	= B/2		0.7183					0.08	TSF		
		L/B=10	I _{zp} = Effective Stre	ess @ B		0.7 100								
			γ _{ν1} =			120				ft dv=	0.15			
			$\gamma_{V2} = \sigma'_{1zp}$ @ depth	= B		57.6	ocf		-3.5	ft dv=	0.00			
			l _{zp} @ depth			0.6544					0.10	101		
F	OUNDING	G ELEVATIO				6				tep value =[
	ELEV	DEPTH FT	Z/B	lz	l _z	0.7183 l _z (L/B)=1	l _z	l _z	0.6544 l _z (L/B)=10	E _s (TSF)	L/B=1 (I*D)/E	L/B=10 (I*D)/E		
	6.0	0.00	0.000	0.100	0.000	0.1000	0.200	0.000	0.2000	125.00	0.0002	0.0004		
	5.8 5.5	0.25 0.50	0.100 0.200	0.224 0.347	0.000	0.2237 0.3473	0.245 0.291	0.000	0.2454 0.2909	125.00 125.00	0.0004 0.0007	0.0005 0.0006		
	5.3 5.0	0.75 1.00	0.300	0.471 0.595	0.000	0.4710 0.5947	0.336	0.000	0.3363 0.3818	125.00 125.00	0.0009 0.0012	0.0007		
	4.8	1.25	0.500	0.718	0.000	0.7183	0.427	0.000	0.4272	125.00	0.0014	0.0009		
	4.5 4.3	1.50 1.75	0.600	0.000	0.670 0.623	0.6704 0.6226	0.473 0.518	0.000	0.4726 0.5181	150.00 150.00	0.0011 0.0010	0.0008		
	4.0	2.00	0.800	0.000	0.575	0.5747	0.564	0.000	0.5635	150.00	0.0010	0.0009		
	3.8 3.5	2.25 2.50	0.900 1.000	0.000	0.527 0.479	0.5268 0.4789	0.609 0.654	0.000	0.6089 0.6544	150.00 150.00	0.0009	0.0010 0.0011		
	3.3	2.75 3.00	1.100 1.200	0.000	0.431 0.383	0.4310 0.3831	0.000	0.633	0.6326 0.6108	150.00 150.00	0.0007 0.0006	0.0011		
	2.8	3.25	1.300	0.000	0.335	0.3352	0.000	0.589	0.5889	150.00	0.0006	0.0010		
	2.5 2.3	3.50 3.75	1.400 1.500	0.000	0.287 0.239	0.2873 0.2394	0.000	0.567 0.545	0.5671 0.5453	150.00 150.00	0.0005 0.0004	0.0009		
	2.0	4.00	1.600	0.000	0.192	0.1916	0.000	0.524	0.5235	150.00	0.0003	0.0009		
	1.8 1.5	4.25 4.50	1.700 1.800	0.000	0.144 0.096	0.1437 0.0958	0.000	0.502 0.480	0.5017 0.4799	150.00 150.00	0.0002 0.0002	0.0008		
	1.3 1.0	4.75	1.900	0.000	0.048	0.0479	0.000	0.458	0.4581	150.00	0.0001	0.0008		
	8.0	5.00 5.25	2.000 2.100	0.000	0.000	0.0000	0.000	0.436 0.414	0.4363 0.4144	150.00 150.00	0.0000	0.0007 0.0007		
	0.5	5.50 5.75	2.200 2.300	0.000	0.000	0.0000	0.000	0.393 0.371	0.3926 0.3708	150.00 150.00	0.0000	0.0007 0.0006		
	0.0	6.00	2.400	0.000	0.000	0.0000	0.000	0.349	0.3490	150.00	0.0000	0.0006		
	-0.3 -0.5	6.25 6.50	2.500 2.600	0.000	0.000	0.0000	0.000	0.327 0.305	0.3272 0.3054	150.00 150.00	0.0000	0.0005 0.0005		
	-0.8 -1.0	6.75 7.00	2.700 2.800	0.000	0.000	0.0000	0.000	0.284	0.2836	150.00	0.0000	0.0005		
	-1.3	7.25	2.900	0.000	0.000	0.0000	0.000	0.262	0.2618 0.2399	150.00 150.00	0.0000	0.0004 0.0004		
	-1.5 -1.8	7.50 7.75	3.000 3.100	0.000	0.000	0.0000	0.000	0.218 0.196	0.2181 0.1963	150.00 150.00	0.0000	0.0004		
	-2.0	8.00	3.200	0.000	0.000	0.0000	0.000	0.175	0.1745	150.00	0.0000	0.0003		
	-2.3 -2.5	8.25 8.50	3.300 3.400	0.000	0.000	0.0000	0.000	0.153 0.131	0.1527 0.1309	150.00 150.00	0.0000	0.0003		
	-2.8 -3.0	8.75 9.00	3.500 3.600	0.000	0.000	0.0000	0.000	0.109 0.087	0.1091 0.0873	150.00 150.00	0.0000	0.0002		
	-3.3	9.25	3.700	0.000	0.000	0.0000	0.000	0.065	0.0654	150.00	0.0000	0.0001 0.0001		
	-3.5 -3.8	9.50 9.75	3.800 3.900	0.000	0.000	0.0000	0.000	0.044	0.0436 0.0218	150.00 150.00	0.0000	0.0001		
	-4.0	10.00	4.000	0.000	0.000	0.0000	0.000	0.000	0.0000	150.00	0.0000	0.0000		
	-4.3 -4.5	10.25 10.50	4.100 4.200	0.000	0.000	0.0000	0.000	0.000	0.0000	150.00 150.00	0.0000	0.0000		
	-4.8	10.75	4.300	0.000	0.000	0.0000	0.000	0.000	0.0000	150.00	0.0000	0.0000		
	-5.0 -5.3	11.00 11.25	4.400 4.500	0.000	0.000	0.0000	0.000	0.000	0.0000	150.00 150.00	0.0000	0.0000		
	-5.5 -5.8	11.50 11.75	4.600 4.700	0.000	0.000	0.0000	0.000	0.000	0.0000	150.00 150.00	0.0000	0.0000		
	-6.0	12.00	4.800	0.000	0.000	0.0000	0.000	0.000	0.0000	150.00	0.0000	0.0000		
	-6.3 -6.5	12.25 12.50	4.900 5.000	0.000	0.000	0.0000	0.000	0.000	0.0000	150.00 150.00	0.0000	0.0000		
	-6.8	12.75	5.100	0.000	0.000	0.0000	0.000	0.000	0.0000	150.00	0.0000	0.0000		
	-7.0	13.00	5.200	0.000	0.000	0.0000	0.000	0.000	0.0000	150.00 SUM-ft/tsf	0.0000	0.0000		
										C1= C2=	1.0000 1.6000	1.0000 1.6000		
										Δq = _	0.3575	0.3575		
										ë=	0.008	0.014 0.17		
									FOR L/B=	1		INCHES		

1916 835 4/21/16 EMM

King Avenue Bridge Replacement

I-95 MD43 Interchange

M:\projects\2004\04130_crb\Geotech\Calcs\Final Design Calcs 2016\PSE Submission Calcs\Schmertman Settlement.xlsx

国		
	C O A	
MA A	D. M.	

Subject CHRISTINA RIVER BRIDGE Page 1 of BERRIES RESEARCE FOR ELE MAIL TANK Cm. No. 104-130

Prepared By 15735 Date 12/10/15 Checked By Date

PURPOSE - PLARING FESISIANCE FOR GIRARE GLAN SUPPORTING ETS FREING TANEL
ASSUMPTIONS.
DETHE GRADE GRAN WILL TO FOUNDED ON EXISTING
27 CHECK BEARING RESISTANCE FOR 2-4 WIDE, 25-1- 23-4 WIDE STOTING
SOIL TICOFILE
BOF @ FL+6.0
EPS (200+ff. LONG) 6"SAND BLANKET BOFFEL+G TEL+G
FILC 1 = 120 p cf (=2.7°
STRATUM IN 7 = 115 pcf. 5 = 2 = 50 psf.

CONTRACTOR N	-		
			1
December 1			
Service of	BELLEVIEL .	The same of the sa	ASS.

Subject CHRISTINA FINER BRIDGE Page 2 of BEARING FESTANCE FOR EPS WALL Cm. No. 104-130

Prepared By BBS Date 12/10/15 Checked By EMIL Date 4/26/16

1	Prepared By BBS Date (2/10/15 Checked By EMIC Date 4/26/16
With THE	PREADING RESISTANCE BE LAYERED SYSTEM UTIFIE LAYER IS CONTIONLESS. 9 0.67 [1+ 3/] HB
	2, 2, 5, 3, 0 H= 3, 0 L= 150-ff LEING RESISTANCE IN STRATON IA
Su:	= 2,50, psf. Vo Sc + Y Dy Ng S, dg(g+ 0.5 T BN = S+ C+
C= 20 No=	50 psf Df = 0.5 Nr = 0.
Sc.=1	$\frac{+3}{51} = 1$ $\frac{5q}{51} = 1$ $\frac{1}{6q} = 1.0$ $\frac{1}{6q} = 1.0$
B 92	20
2.5 1315 _{Fis}	3665 2977 2970 B= 2001
	9, = 6500 15j
FOR AS	D 9 7017 = 250 psj

GEOTECHNICAL QUALITY CONTROL SIGN OFF SHEET

Project Name:	Christina River Bridge		
Commission Number	er: 04-130-03G		
Client Name:	DelDOT		
Document Title:	Design of Load Transf	er Platform for Deep Mixing	g Method
Document Type: (Check One)		port/Memo 🗵 Calculated Calculate	tions
Project Milestone:		Due Date:	
checked my work pr	I was the originator of this vior to passing it on for Quality bek Shrestha	ry Control checking.	*
	Print Name	Signature	Date
Checked:	Print Name	Signature	Date 4/50/16
Checked:		Signature Signature	Date 4/50/6 4/21/16
_/	ance KLETN	Signature Signature	Date 4/50/6 4/21/16
Corrected:	ance KLETN	Signature Local book	Date 4/50/6 4/21/16
Corrected:	ance KLETN	Signature Local book	Date 4/50/6 4/21/16
Corrected: Checked: Corrected:	ance KLETN	Signature Signature	Date 4/20/6 4/21/16

GEOTECHNICAL CALCULATION QUALITY CONTROL CHECKLIST

Proje	ject: Christina River Bridge	Comm. No: 04-130-03G
Title	e of Calculation Set: Design of Load Transfer Platform	for Deep Mixing Method
RK&K	kK Project Manager: EMK Coordinati	ng Discipline POC:
Calcu	culations Prepared By: BBS Desi	gn Method/Code:
File P	Path on Network:	
Subsu	surface Characterization Approved By:	
Initia	ial Calculations: Signature of Originator: Bibel Geotech Quality Control Sign Off Sheet is provided. Calculations are neat, legible and understandable.	Smeetha Date: 4/14/2016
\boxtimes	Variable inputs are highlighted and check confirmation spreadsheets.	ons are clearly marked in calculation
	Table of Contents is provided. Heading on each page filled out, including computer The first page contains purpose of the calculation.	input and output.
	References for design criteria, data, methods, formu and version numbers are given, and included in a	
	All assumptions are listed, explained, and those need All input by others is attached and includes originato loads, concrete/steel properties, etc.)	
	Can the analytical steps involved be followed indeperation to the calculations agree with the other inter-department of the path (tab page and print data is provided).	tment / project documents?
	Footer with file path/tab name and print date is provided that clear Detailed CAD ready sketches are provided that clear Calculation Summary with recommendations include All calculations are checked and each calculation she before giving to the checker.	ly depict the design requirements. ed in front of calculation set.
Fina	nalized Calculations: Signature of Originator:	Date:
□А	All pages are numbered sequentially and cross-referentially and cross-referent	
□ н	Has this calculation been superseded? Reference new	* **

This sheet is to be prepared by the originator of the calculation and attached to the front of the calculation set

	NEW AND	AT	EXIT	Ally
	題品	60	D BLA	
		翻 城		A
EH .	A A	32 ×	R. 4	TO A

Subject CHRISTINA RIVER BRIDGE Page - of
LTP REINFORCEMENT DESIGN Cm. No. 84-130-036

Prepared By 13RS Date 4/14/16 Checked By GM Date 4/20/16

TABLE OF CONTENT	
	PAGE
2 22 2	
1) PURPOSE	
2) REINFORCEMENT FOR LTP DESIGN	2
(S-d)=5-H	2
(5-d) = 8-f	5
2	
3) REFRENCES	-6
4) LONG TERM DESIGN STRENGTH	9
	7
	o o
SUMMARY.	
LTP THICKNESS MINIMUM (S-d)	Luo
	L
LTP CONSTRUCTED USING GRADED AGGREGATE	TYPE R
	CRUSHER RUN
USE A MINIMUM OF 3 LAYERS OF GEOGRID	
SUMMARY.	
@ 5% STRAIN FOR ROTH (5-d) = 5 H 4	8-14
@ 5 % STRAIN FOR ROTH (5-d) -5 ft 4	٧.
USE BIANAL GOOGLID WITH TENSILESTO	
V SE DIANAL ACOGRIO WITH TENSILE STE	ELOGIA) 200 OFF
TENSAR BIAXIAL HOO WORKS	
BX1500	
TENSAX TRIAXIAL TX GEOGRID ALSO!	NORKS.

Subject CHRISTINA PINER FRINGE Page of
LIP REINFORCEMENT DESIGN CM. NO. 04-180
Prepared By F.Z.S. Date 4/14/16 Checked By EMIC Date 4/20/16
TURFORE: BESIGN OF LOAD TRANSFER FLATAMEN FOR DEEP MINING
DESIGN REBUREMENT
THICKNESS OF LPP > ONE HALF THE CLEAR STAN BETWEEN COLUMNS. 2) MINIMUM THREE LAYERS OF REINFORCEMENT 3) MINIMUM 6-INCHES BETWEEN REINFORCEMENT 4) OSF GRADED AGGREGATE FOR LTP: BASE F
REFERENCE
GEOSYNTHETIC PEINFORCED COLUMN SUPPORT ENBANKMENT DESIGN GUIDELINES BY COLLIN, HAN, HUANG USE BEAM (COLUM) METHOD FOR DESIGN.
ASSUMPTION:
D ASSUME SQUARE PATTERN COLUMN SPACING
CLEAR SPACING BETWEEN COLUMNS = 5 / 28 / (S-d)
2 ANGLE OF ARCHING 45
3) TENSILE LOAD IN CENTORCEMENT BASED ON TENSION MEMBRANE THEORY
@ INITIAL STRAIN IN REINFORCEMENT IS LIMITED tO 5%

	Subject CHRISTINA FINER BRIDGE Page 2 of	
RKSK	LTP REINFORCEMENT DESIEN CM. NO. 04-130	
and those there is a second	Prepared By 1835 Date 4/14/16 Checked By EM Date 11/201	(16
	h= B-WCHES	. ! !
ε h ₄		
8 h3		
8" hz		ļ
8" h,		· · · · · · · · · · · · · · · · · · ·
	5-0	
FOR S-d	LAYER () = 5 - H	1
DC	RTICAL LOAD ON CAYER N REINFORGEMENT	
ONTERN VE	TOTAL CORD OF GRIEN IS GINFORGENESI	
WTNTLA	$A + A_{n+1} + A_n + \frac{1}{2} A_n$	
77 - 78	EA OF REINFORCEMENT CATES OF OR MAIL	1 (=
	EA OF REINFORCEMENT LAYER OF OR OHI	45)
A = 5 c	2 (0 1 -2	
	(12 TANHS)	
A, = 13,	,44 42	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	5 - 2 7 '6 V L \72	
72 = 13	2 - 2 (-12 × 7 m/2)	

 $h_A = 8 \text{ in } = 0.67 \text{ f}$ $V = 130 \text{ pcf} \qquad G_P A DEO \text{ AGGREGATE}$ $W_{TN} = (13.44 + 5.44) \times 0.67 \times 180$ $2 \times 13.44 \text{ f}$ Responsive People · Creative Solutions

www.rkk.com

ATTENDED	W AN	100 AST
問層	MAR O	
	45年	197
AN WA	A BH 75	A AMP

Subject CHRISTINA RINER TORINGE Page 3 of LTP REINFORCEMENT DESIGN CM. No. 04-130

Prepared By BBS Date 4/14/16 Checked By EMM Date 4/2/16

TENSILE LOAD IN REINFORCEMENT
Trmo = Win D/2
-2= DIMENSION LESS FACTOR (SEE PAISE 798)
PONFORCEMENT STRAIN (E) 7
2,07
1,47 2
1.23
1,08
0.97
D = DESIGN SPANFOR TENIONED MEMBRANE = 1.41x [(S-d) - 2 (EVERTICAL SPACING FIANCE)]
D, = 1,41 x [5 + 2 x (8 x 4)] = 51.17 P
Trph 0 = WFNO SZ D/2
$0.8 = 1\%$ = $61.18 \times 2.07 \times 5.17$ = 327.4 Uby
$a \in =2\%$ = 61.18 × 1.47 × 5.1 f_2 = 232.48 (b/yf) $a \in =5\%$ = 61.18 × 0.97 × 5.17 = 153.4 (b/yf)
TENSAR BX 1100 BIAKIAL GEOGRIN
CHECK @ 5% STRAIN. 5% STRAIN TENISTR = 580 LL/4F

Responsive People \cdot Creative Solutions

www.rkk.com

427	THE PARTY IN	A SE		A
130	HI R	46		
		PER 2	E 399	EA.
	AND A	BEER .	THE A	EED

Subject CHRISTINA RIVER BRIDGE Page 4 of
LTP REINFORCEMENT DESIGN CM. No. 04-130

Prepared By BB' Date 11/14/16 Checked By EMIL Date 4/20/16

		· · · · · · · · · · · · · · · · · · ·							
DE	SIGN F	DR LA	YER (2)			1	, is	1
	= 5.44				*****				
		1	071		72				
3	5	- 2. x/E	72 > 7	AN45	1	1 ;			
A	3 = 1	42			Si	ļ			
W	[N 60 = (5.44 + 1	1) . 0.0	7 / 120)				
	NO		2	x5.44		i			-
	= 2	51.55 (6/42			1			
Approximation of the state of t					<u> </u>	<u> </u>			į.
. <i>T</i> ,	rpn (2) =	NTV -C	2-72						
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1			4		ŢŢ.,	
		1,41 ×	15 F 2 x	(12 ×	TAN45_				
	D 2	= 3.29		-					
=1% T	7Pn 6			7 × 3.	29		75.5	3 (6/11)	
		1			L			· V !	
= 2%	1 1 2	= 51.55		1 1	`		124.65		
-5%		= 51.55	× 0.77	x \$.29	***************************************	=	82.25	Chit	
	To	EN SAR	Tx 1100	BIAX	(A) - C	7110	CRIT	# ************************************	
							Call and the call		
	· 1 · · · · · · · · · ·								
		1				The second secon	<u> </u> -		

DKOK	
	153
	_
局 可以 多 图 一	1

Subject CARISTINA RIVER BRIDGE Page 5 of LTP REINFORCEMENT DESIGN CM. No. 04-130

Prepared By BBS Date 4/14/16 Checked By EM Date 4/10/16

Trepared by Date 7.7.17 d Checked	57 6750
FOR S-d=8-ft h= 12 in eq	UAL DIVISION.
DESIGN FOR LAYER (1)	
$W_{TN} = \left[A_N + A_{N+1} \right] \frac{h_n}{2A_N}$	
	36 H2
	16 H2
$h_n = 12 \text{ in } = 1 \text{ f}$	
$h_n = 12 \text{ in } = 1 \text{ f}$. $5 = 130 \text{ pg}$.	
WIND = (36+16) x 1×130 = 93,9	Co / fr
D, = 1.41 x [(3-1) - 2 (& VERTICAL SPACE	NG (7an 45)]
$= (.41 \times \left[8 - 2 \times \left(\frac{12}{12} \times \frac{1}{7} \times \frac{1}{7} \times \frac{1}{7} \times \frac{1}{7} \right) \right]$	
= 2.76 f	
TrphO = WTNO 52 1/2	
e=1% = 93.9 × 2.07 × 8.46/2 =	822.2 6/4
	583.96/f
E=57 = 98.9× 0.97 × 9.46, =	385. 3 16/ft.
TENSAR BX 1100 BIAXIAL GEOGR	
@ 5% STRAW TEN STR	5.80 (b/4 - OR -

GEOGRATHETIC REINFORCES COLUMN SUPPERT EMBANKMENT DESIGN GUIDELINES COLLINS, HAN HUANG

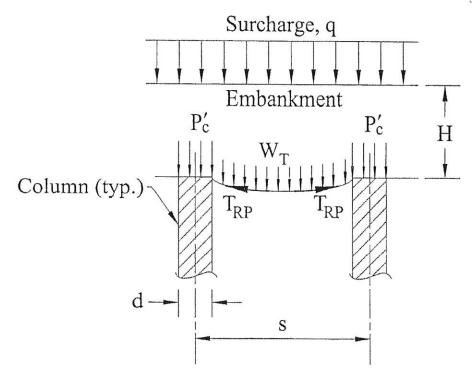


Figure 9. Definition of terms

6.2 Beam Method

The beam (Collin) method is based on the following assumptions:

- The thickness (h) of the load transfer platform is equal to or greater than one half the clear span between columns (s-d).
- A minimum of three layers of extensible (geosynthetic) reinforcement is used to create the load transfer platform.
- Minimum distance between layers of reinforcement is 150 mm (6 in.).
- Select fill is used in the load transfer platform.
- The primary function of the reinforcement is to provide lateral confinement of the select fill to facilitate soil arching within the height (thickness) of the load transfer platform.
- The secondary function of the reinforcement is to support the wedge of soil below the arch.
- The vertical load from the embankment above the load transfer platform is transferred to the columns below the platform.
- The initial strain in the reinforcement is limited to 5%.

The vertical load carried by each layer of reinforcement is a function of the column spacing pattern (*i.e.*, square or triangular) and the vertical spacing of the reinforcement. If the subgrade soil is strong enough to support the first lift of fill, the first layer of reinforcement is located 0.15-

0.25 m (6-10 in.) above subgrade. Each layer of reinforcement is designed to carry the load from the platform fill that is within the soil wedge below the arch. The fill load attributed to each layer of reinforcement is the material located between that layer of reinforcement and the next layer above (Figure 10).

The uniform vertical load on any layer (n) of reinforcement (W_{Tn}) may be determined from the equation below for an angle of arching of 45 degrees:

 W_{Tn} = (area at reinforcement layer n + area at reinforcement layer (n+1))/2) (layer thickness) (load transfer platform fill density)/(area at reinforcement layer n)

$$W_{Tn} = [A_n + A_{n+1}] h_n \gamma / 2 A_n$$
 (5)

where: A = Area at reinforcement layer n or n+1

= [(s-d) - 2(ΣReinforcementVertical Spacing/tan45)]² for square column spacing

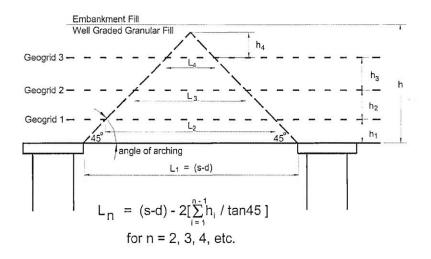
= [(s-d) - 2(ΣReinforcementVertical Spacing/tan45)]²sin60/2 for triangular column spacing

The tensile load in the reinforcement is determined based on tension membrane theory and is a function of the amount of strain in the reinforcement. The tension in the reinforcement is determined from the following equation:

$$T_{rpn} = W_{Tn} \Omega D/2$$
 (6)

where: D = design span for tensioned membrane

= $1.41*[(s-d) - 2(\Sigma Vertical Spacing/tan45)]$ for square column spacing


= $0.867*[(s-d) - 2(\Sigma \text{Vertical Spacing/tan45})]$ for triangular column spacing

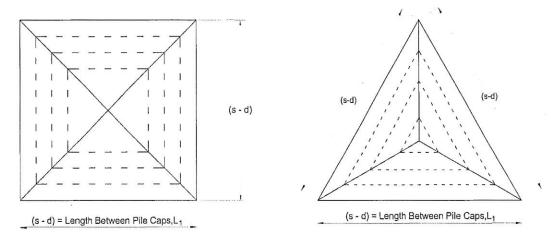

 Ω = dimensionless factor from tensioned membrane theory

Table 1. Values of Ω .

Ω	Reinforcement Strain (ε)%
2.07	1
1.47	2
1.23	3
1.08	4
0.97	5

Square Column Spacing

Triangular Column Spacing

Figure 10. Load transfer platform design Collin method

	Subject CRB	Page 7 of
	LTP REINFORCEMENT DESIGN Prepared By BBS Date 4/21/16 Checked By EMM	
CHECK GEO	GRIDS FOR LONGTERM DESIGN STRENG	74
B× 1100	TUCT = 850 CS/JF.	
0	PN EFF = 93%	
	CE TO INSTALLATION DAMAGE = 90% 1 WCG TO LONG TERM DEGIRATION = 100%	FOR GRADEN AGGA
	FACTOR OF SAFETY = 3.0	
LONG TERM DEST	GN STRENGTH = TUCT × (j × () × (p B× 1100) FSCR	
	= 850 x 0.93 x 0.9 x 1	
	= 237.15 U/J < 386	Cly RED It 57 STEA!
	K FOR 5-H SPACING	FOR 2-4 SPA
DX 15 00	CJ = 93% C, = 90% CD =	100%
	FScp = 3.0	
LONG TORM]	DESIGN STRENGTH - 1850 X 0.93 X 0.	7 × 1
	= 516 4/4 >	386 Cb/4 RED
/	J 0740 R GRIDS W/ LTDS > 38	Ca 5 % STRAIN
ANY TRIANIAL	(STOD) / CAN WUSK, TOOL	

Tensar International Corporation 2500 Northwinds Pkwy, Suite 500 Alpharetta, Georgia 30009 Phone: 800-TENSAR-1

www.tensarcorp.com

Product Specification - Biaxial Geogrid BX1100

Tensar International Corporation reserves the right to change its product specifications at any time. It is the responsibility of the specifier and purchaser to ensure that product specifications used for design and procurement purposes are current and consistent with the products used in each instance.

Product Type:

Integrally Formed Biaxial Geogrid

Polymer:

Polypropylene

Load Transfer Mechanism:

Positive Mechanical Interlock

Primary Applications:

Spectra System (Base Reinforcement, Subgrade Improvement)

Product Properties

Index Properties	Units	MD Values ¹	XMD Values ¹
 Aperture Dimensions² 	mm (in)	25 (1.0)	33 (1.3)
 Minimum Rib Thickness² 	mm (in)	0.76 (0.03)	0.76 (0.03)
 Tensile Strength @ 2% Strain³ 	kN/m (lb/ft)	4.1 (280)	6.6 (450)
 Tensile Strength @ 5% Strain³ 	kN/m (lb/ft)	8.5 (580)	13.4 (920)
 Ultimate Tensile Strength³ 	kN/m (lb/ft)	12.4 (850)	19.0 (1,300)
Structural Integrity			
 Junction Efficiency⁴ 	%	93	
 Flexural Stiffness⁵ 	mg-cm	250,000	
 Aperture Stability⁶ 	m-N/deg	0.32	
Durability			
 Resistance to Installation Damage⁷ 	%SC / %SW / %GP	95 / 93 / 90	
 Resistance to Long Term Degradation⁸ 	%	100	
 Resistance to UV Degradation⁹ 	%	100	

Dimensions and Delivery

The biaxial geogrid shall be delivered to the jobsite in roll form with each roll individually identified and nominally measuring 3.0 meters (9.8 feet) or 4.0 meters (13.1 feet) in width and 75.0 meters (246 feet) in length. A typical truckload quantity is 185 to 250 rolls.

Notes

- Unless indicated otherwise, values shown are minimum average roll values determined in accordance with ASTM D4759-02. Brief descriptions of test procedures are given in the following notes.
- Nominal dimensions.
- 3. Determined in accordance with ASTM D6637-10 Method A.
- Load transfer capability determined in accordance with ASTM D7737-11.
- 5. Resistance to bending force determined in accordance with ASTM D7748-12, using specimens of width two ribs wide, with transverse ribs cut flush with exterior edges of longitudinal ribs, and of length sufficiently long to enable measurement of the overhang dimension.
- 6. Resistance to in-plane rotational movement measured by applying a 20 kg-cm (2 m-N) moment to the central junction of a 9 inch x 9 inch specimen restrained at its perimeter in accordance with GRI GG9.
- 7. Resistance to loss of load capacity or structural integrity when subjected to mechanical installation stress in clayey sand (SC), well graded sand (SW), and crushed stone classified as poorly graded gravel (GP). The geogrid shall be sampled in accordance with ASTM D5818 and load capacity shall be determined in accordance with ASTM D6637.
- 8. Resistance to loss of load capacity or structural integrity when subjected to chemically aggressive environments in accordance with EPA 9090 immersion testing.
- Resistance to loss of load capacity or structural integrity when subjected to 500 hours of ultraviolet light and aggressive weathering in accordance with ASTM D4355-05.

Tensar International Corporation 2500 Northwinds Pkwy, Suite 500

> Alpharetta, Georgia 30009 Phone: 800-TENSAR-1 www.tensarcorp.com

Product Specification - Biaxial Geogrid BX1500

Tensar International Corporation reserves the right to change its product specifications at any time. It is the responsibility of the specifier and purchaser to ensure that product specifications used for design and procurement purposes are current and consistent with the products used in each instance.

Product Type:

Integrally Formed Biaxial Geogrid

Polymer:

Polypropylene

Load Transfer Mechanism:

Positive Mechanical Interlock

Primary Applications:

Spectra System (Base Reinforcement, Subgrade Improvement)

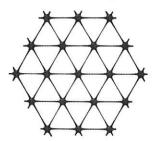
Product Properties

Index Properties	Units	MD Values ¹	XMD Values ¹
 Aperture Dimensions² 	mm (in)	25 (1.0)	30.5 (1.2)
 Minimum Rib Thickness² 	mm (in)	1.78 (0.07)	1.78 (0.07)
 Tensile Strength @ 2% Strain³ 	kN/m (lb/ft)	8.5 (580)	10.0 (690)
 Tensile Strength @ 5% Strain³ 	kN/m (lb/ft)	17.5 (1,200)	20.0 (1,370)
 Ultimate Tensile Strength³ 	kN/m (lb/ft)	27.0 (1,850)	30.0 (2,050)
Structural Integrity			
 Junction Efficiency⁴ 	%	93	
 Flexural Stiffness⁵ 	mg-cm	2,000,000	
 Aperture Stability⁶ 	m-N/deg	0.75	
Durability			
 Resistance to Installation Damage⁷ 	%SC / %SW / %GP	95 / 93 / 90	
 Resistance to Long Term Degradation⁸ 	%	100	
 Resistance to UV Degradation⁹ 	%	100	

Dimensions and Delivery

The biaxial geogrid shall be delivered to the jobsite in roll form with each roll individually identified and nominally measuring 4.0 meters (13.1 feet) in width and 50.0 meters (164 feet) in length. A typical truckload quantity is 180 rolls.

- 1. Unless indicated otherwise, values shown are minimum average roll values determined in accordance with ASTM D4759-02. Brief descriptions of test procedures are given in the following notes.
- 2. Nominal dimensions.
- 3. Determined in accordance with ASTM D6637-10 Method A.
- 4. Load transfer capability determined in accordance with ASTM D7737-11.
- 5. Resistance to bending force determined in accordance with ASTM D7748-12, using specimens of width two ribs wide, with transverse ribs cut flush with exterior edges of longitudinal ribs, and of length sufficiently long to enable measurement of the overhang dimension.
- 6. Resistance to in-plane rotational movement measured by applying a 20 kg-cm (2 m-N) moment to the central junction of a 9 inch x 9 inch specimen restrained at its perimeter in accordance with GRI GG9.
- 7. Resistance to loss of load capacity or structural integrity when subjected to mechanical installation stress in clayey sand (SC), well graded sand (SW), and crushed stone classified as poorly graded gravel (GP). The geogrid shall be sampled in accordance with ASTM D5818 and load capacity shall be determined in accordance with ASTM D6637.
- 8. Resistance to loss of load capacity or structural integrity when subjected to chemically aggressive environments in accordance with EPA 9090 immersion testing.
- 9. Resistance to loss of load capacity or structural integrity when subjected to 500 hours of ultraviolet light and aggressive weathering in accordance with ASTM D4355-05.


Product Specification - TriAx TX130S Geogrid TX10S Geogrid TX10S

Tensar International Corporation reserves the right to change its product specifications at any time. It is the responsibility of the person specifying the use of this product and of the purchaser to ensure that product specifications relied upon for design or procurement purposes are current and that the product is suitable for its intended use in each instance.

General

- The geogrid is manufactured from a punched polypropylene sheet, which is then oriented in three substantially equilateral directions so that the resulting ribs shall have a high degree of molecular orientation, which continues at least in part through the mass of the integral node.
- The properties contributing to the performance of a mechanically stabilized layer include the following:

Tensar TriAx® Geogrid

Index F	Properties	Longitudinal	Diagonal	General
	Rib pitch ⁽²⁾ , mm (in)	33 (1.30)	33 (1.30)	
	Rib shape			Rectangular
	Aperture shape			Triangular

Structural Integrity

•	Junction efficiency ⁽³⁾ , %	93
•	Overall Flexural Rigidity ⁽⁴⁾ , mg-cm	500,000
	Radial stiffness at low strain ⁽⁵⁾ , kN/m @ 0.5% strain	200
	(lb/ft @ 0.5% strain)	(13,708)

Durability

· · · · · · · · · · · · · · · · · · ·	
Resistance to chemical degradation ⁽⁶⁾	100%
Resistance to ultra-violet light and weathering ⁽⁷⁾	70%

Dimensions and Delivery

The TX geogrid shall be delivered to the jobsite in roll form with each roll individually identified and nominally measuring 3.0 meters (9.8 feet) and/or 4.0 meters (13.1feet) in width and 75 meters (246 feet) in length.

Notes

- Unless indicated otherwise, values shown are minimum average roll values determined in accordance with ASTM D4759-02. Brief descriptions of test procedures are given in the following notes.
- 2. Nominal dimensions.
- 3. Load transfer capability determined in accordance with ASTM D6637-10 and ASTM D7737-11 and expressed as a percentage of ultimate tensile strength.
- 4. Determined in accordance with ASTM D7748-12.
- 5. Radial stiffness is determined from tensile stiffness measured in any in-plane axis from testing in accordance with ASTM D6637-10.
- Resistance to loss of load capacity or structural integrity when subjected to chemically aggressive environments in accordance with EPA 9090
 immersion testing.
- Resistance to loss of load capacity or structural integrity when subjected to 500 hours of ultraviolet light and aggressive weathering in accordance with ASTM D4355-05.

Tensar International Corporation

2500 Northwinds Pkwy. Atlanta, Georgia 30009 Phone: 800-TENSAR-1 www.tensarcorp.com This specification supersedes any and all prior specifications for the product designated above and is not applicable to any product shipped prior to April 3, 2012. Tensar and TriAx are trademarks of Tensar International Corporation or its affiliates in the US and many other countries. TriAx: geogrid and the use thereof are protected by U.S. Patent No. 7,001.112. Patents or patent applications also exist in other countries. Final determination of the suitability of the above-mentioned information or product for the use contemplated, and its manner of use are the sole responsibility of the user. Tensar International Corporation disclaims any and all express, implied or statutory warranties, including but not limited to, any warranty of merchantability or fitness for a particular purpose regarding this product or the Company's other products, technologies or services. The information contained herein does not constitute engineering advice.

GEOTECHNICAL QUALITY CONTROL SIGN OFF SHEET

Project Name:	Christina River Brid	Christina River Bridge			
Commission Number	er: 04-130-03G	04-130-03G			
Client Name:	DelDOT	DelDOT			
Document Title:	Lateral Squeeze An	Lateral Squeeze Analysis of Roadway Emb. STA 447+00 to 450+00			
Document Type: [(Check One)		Report/Memo $oxtimes$ Calculation $oxtimes$ Other:	ons		
Project Milestone:		Due Date:			
	I was the originator of thi or to passing it on for Qua	s work product, and that I have lity Control checking.	e carefully		
Printed Name: Bib	ek Shrestha				
Signature:	ibek Streetta	Date: 3/10/2016			
	Print Name	Signature	Date		
Checked:	= RICMKLEIN	EMMe	4/26/16		
☐ Corrected:			-		
☐ Checked:					
☐ Corrected:					
Checked:					
☐ Project Engr:					
-					

the calculation set

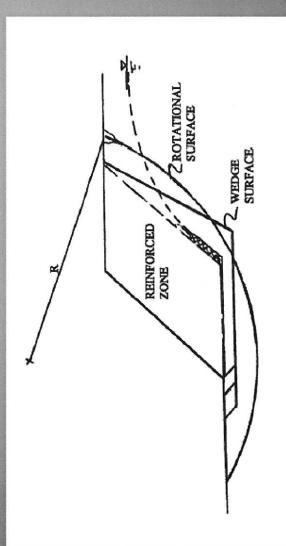
07/10/2015

GEOTECHNICAL CALCULATION QUALITY CONTROL CHECKLIST

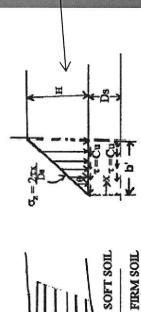
Project: Christina River Bridge	Comm. No: 04-130-03G			
Title of Calculation Set: Lateral Squeeze Analysis of Roadway Emb. STA 447+00 to 450+00				
RK&K Project Manager: EMK Coordinating Discipline POC:				
Calculations Prepared By: BBS	Design Method/Code:			
File Path on Network:				
Subsurface Characterization Approved By:				
Initial Calculations: Signature of Originator: ☑ Geotech Quality Control Sign Off Sheet is	•			
☑ Calculations are neat, legible and underst☑ Variable inputs are highlighted and check				
spreadsheets.	confirmations are clearly marked in calculation			
☐ Table of Contents is provided.				
☐ Heading on each page filled out, including	g computer input and output.			
oxtimes The first page contains purpose of the cal	culation.			
References for design criteria, data, meth and version numbers are given, and inc	nods, formulas and computer program names cluded in appendices as necessary.			
200 To 100 To	those needed to be verified later are flagged.			
 All input by others is attached and include loads, concrete/steel properties, etc.) 	es originator, date provided. (i.e. Structures			
Can the analytical steps involved be follow	-			
☐ Do the calculations agree with the other i				
	date is provided on calculation spreadsheets.			
	Detailed CAD ready sketches are provided that clearly depict the design requirements.			
 Calculation Summary with recommendations included in front of calculation set. All calculations are checked and each calculation sheet is initialed by the originator 				
All calculations are checked and each calculation sheet is initialed by the originator before giving to the checker.				
before giving to the checker.				
Finalized Calculations: Signature of Origina	tor: Date:			
\Box All pages are numbered sequentially and cross-references are complete and accurate.				
\square All calculations are checked and each calculation sheet initialed by the checker.				
☐ Calculation set reviewed by Project Manager.				
\square Has this calculation been superseded? Reference new calculation, if applicable.				
This sheet is to be prepared by the originator of	the calculation and attached to the front of			

C:\bshrestha10919\bshrestha\Desktop\Manuals\1 Cover Sheets\Geotech Calculations Checklist Sheet(NEW).docx Last Updated:

Subject CARISTINA RIVER BRINGE Page I of
ROADWAY EMB STA 447+00 TO 450+00 LATERAL SQUEETM. No. 04-130


Prepared By BB: Date 3/10/16 Checked By Date 3/11/16

PORPOSE:	EVALUATE THE POTENTIAL FOR LATERAL SQUEEZE OF STRATUM IN DUE TO THE CONSTRUCTION OF ROADWAY EMBRNICHENT
REFERENCE	6 CHECK LATERAL SQUEETE FOR CHIEANIMENTEL BASED ON SIWESTRI 1983
	FS squeezing = 2cu + 4.14 Ca > 1.03
	SEE ATTACHED SHEETS.
	Q = ANGLE OF SLOPE
	T = UNIT WEIGHT OF SOIL IN SLOPE
	DS = DEPTH OF SOIL BENEATH SLOPE BASE OF EMBANEMENT
	H = HEIGHT OF SOPE
	Cu = UNDRAINED SHEAR STRENGTH OF SOFT SOIL BENEATH
#	STE CALCSET ROADWAY EMBANKMENT STA 447+00 TO STA 49+00
ASSUMPTIONS	
/	RNESS OF SOCT GAYER (STR. I.a.) = 16-41 (AVG)
	ANKMENT SLOPE 34:1V
3) EMI	SAMENT TEMP HEIGHT 9- ST FOR SURCHARG & I-1F


Subject CHRISTINA RIVER POR	IDGE Page 2 of
PLANNAY EMB STA 447+00 TO STA 450+00	LATERAL SUFELE CM. No. 04/30-039
Prepared By BBS Date 3/10/15	Checked By EMIC Date 3/11/C
EDIL PARAMETE & CROSS S	
	ECTON
55' +1-	
3 1 1 1	4
7=125py H2 7-4 H1 9-4+	
Cu= Su = 200 psq.	
Ds=16-H	STR Ia
	SOFT FIALE GRAINED
	NIS
FOR 3H! IV SLOPE #= ,	18.44
FS = 2Cu + 4.14Cu	> /.3
t-10 040 - C-N	
TEMPORALY CONDT FOR 4= 9-1f FS = 2×200 125×16×tan 18.4	4,14,200
= 0.6 + 0.73	,
FS = 1,836 /	7/13 OK
FOX TERMANENT CONDITION H = 7-	
B = 2×200 125×16×tan 18.44	+ 4.14 ×200 7 ×125
= 0.6 + 0.946	
/ FS. = 1.546 OF	
NOTE AFTER PRELOADING & SHEAR STRE	NOTE CHAIN COT
Responsive People · Creative Solutions FACTOR OF SAFETY WILL	NGTH GAIN IN SIR IG WWW.rkk.com

www.rkk.com

ateral Squeeze

a) Deep seated (global) stability analysis.

 $FS = \frac{2c_u}{\gamma D_s \tan \theta} + \frac{4.14 c_u}{H \gamma}$

b) Local bearing failure (lateral squeeze)

Figure 9-8. Failure through the foundation.

Interesting Model of Squeeze

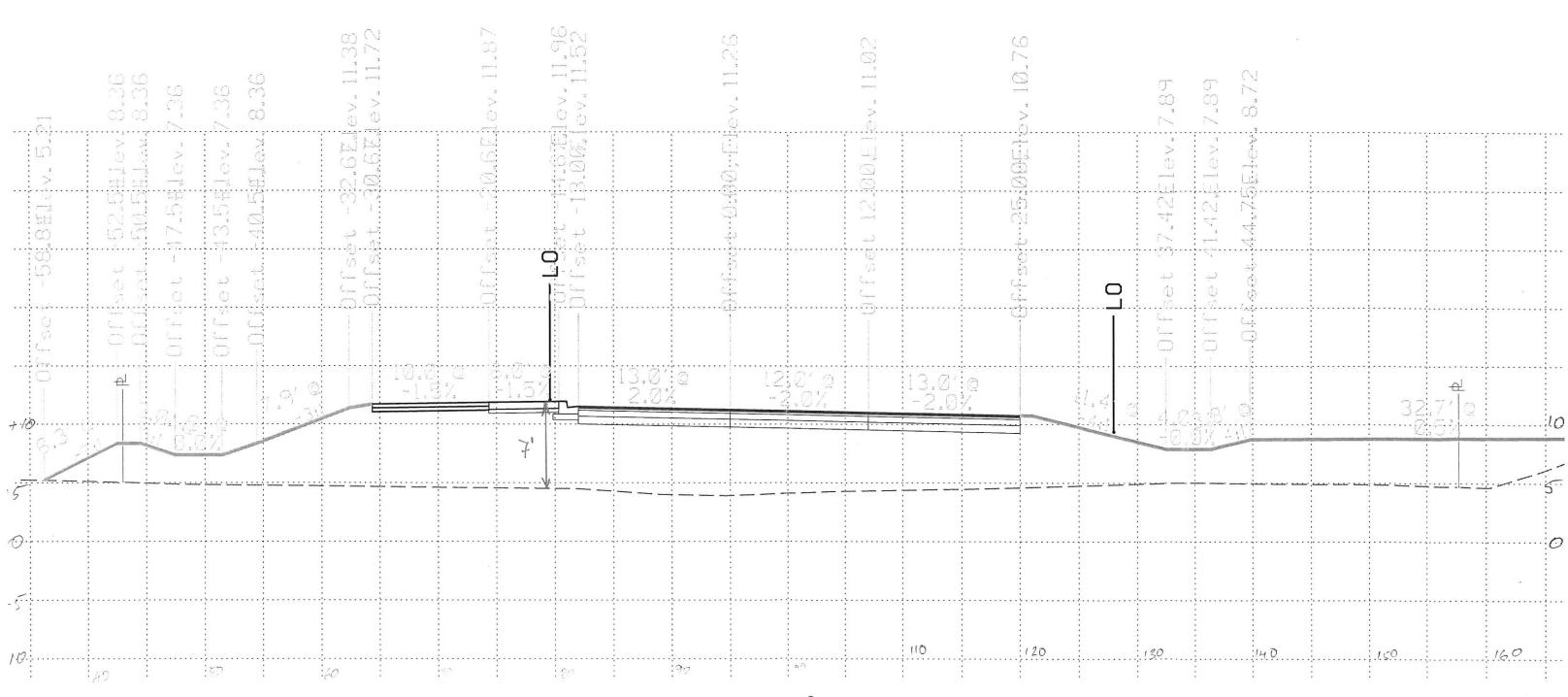
Lateral Squeeze

- Local bearing failure at the toe (lateral squeeze) (Figure 9-8b).
- If a weak soil layer exists beneath the embankment to a limited depth D_s which is less than the width of the slope b', the factor of safety against failure by squeezing may be calculated from (Silvestri, 1983):

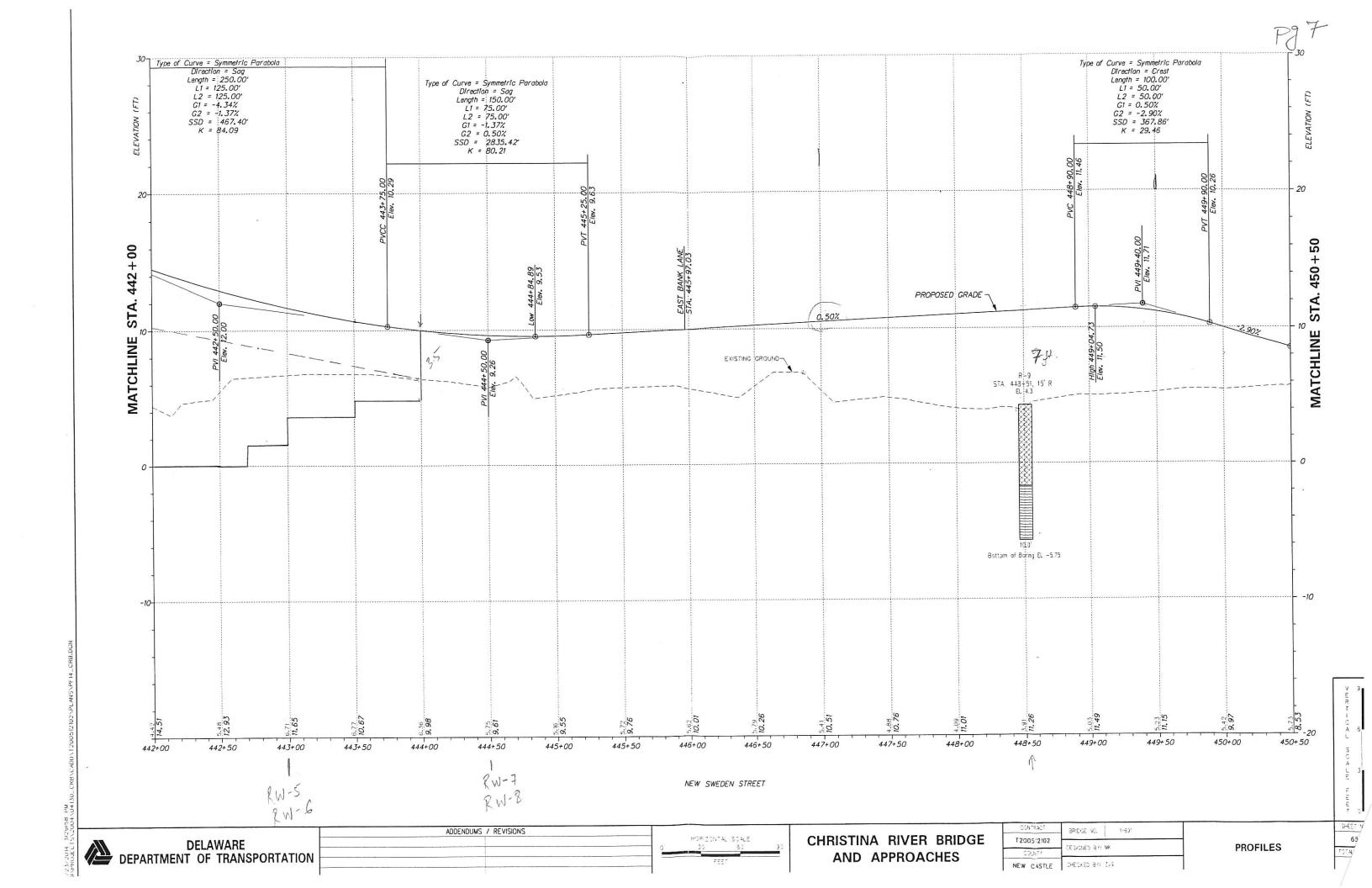
$$FS_{\text{squeezing}} = \frac{2c_u}{\gamma D_s \tan \theta} + \frac{4.14c_u}{H\gamma} \ge 1.3 \tag{9-15}$$

where:

e angle of slope


unit weight of soil in slope

D_s = depth of soft soil beneath slope base of the embankment


I = height of slope

 c_{u} = undrained shear strength of soft soil beneath slope

Caution is advised and rigorous analysis (e.g., numerical modeling) should be performed when FS < 2. This approach is somewhat conservative as it does not provide any influence from the reinforcement. When the depth of the soft layer, D_S, is greater than the slope base width, b', general slope stability will govern design

STA 448+50 .

